
5 Multivariate Extremes slide 158

5.1 Introduction slide 159

Multivariate extremes

! Many extremal problems are essentially multivariate in nature:

– overwhelming of sea defences by a combination of high tides and high winds;

– lots of traffic at different servers on a communication network;

– flooding at many locations of a river system;

– several successive very hot days (heat waves);

– (near-)simultaneous downturns in several stock markets.

! Also, the (often) large variability of extreme value estimates may be reduced by incorporating
information via multivariate models.

! In one dimension it’s obvious what is ‘extreme’, but in addition to previous questions about
suitable asymptotic models, inference, and complications, we must now consider:

– what is ‘extreme’ in two or more dimensions?

– how can we summarize extremal dependence of different variables?
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Air pollution in London

2000 2010 2020

0
50

10
0

15
0

20
0

Air pollution at London N. Kensington

 

N
itr

og
en

 d
io

xi
de

 [µ
g/

m
3 ]

2000 2010 2020

0
20

40
60

80
10

0
12

0

Time

Pa
rti

cu
la

te
 m

at
te

r P
M

10
[µ

g/
m

3 ]

http://stat.epfl.ch slide 161

158



Air pollution in London
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Air pollution in London: Empirical tail dependence

! Each pollutant has its own marginal distribution: F1 for NO2 and F2 for PM10, say.

! To see empirically how their large values behave we first make the margins comparable.

! If X is a continuous random variable with CDF FX , the random variable U = FX(X), the
probability integral transform of X, is uniformly distributed on the unit interval.

! We assess the joint behaviour of NO2 and PM10 by estimating

K(u) = P(F1(NO2) > u | F2(PM10) > u), 0 < u < 1.

! Large values for one variable lead to large values of the other. What happens when u → 1?
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Structure variables

! Multivariate analysis is difficult, so perhaps we could simplify?

! Could consider a scalar structure variable S = s(X1, . . . ,XD) ∈ R, e.g.,

– insurance loss
S =

∑

d

ad(Xd),

where increasing (possibly non-linear) functions ad(·) express damages to properties d due to
risks Xd.

! Then, we have scalar losses S1, . . . , Sn to which previous ideas apply, using block maxima or
threshold exceedances.

! Advantages: simple analysis, ignores dependence between X1, . . . ,XD.

! Disadvantages:

– analysis changes with S, so if new structure variable is introduced, new analysis is
needed—which may disagree with original;

– missing values of Xd not allowed;

– don’t learn which combinations of X1, . . . ,XD yield extreme events.

! So we should study the joint distributions. First we have to look at dependence in general . . .
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Choice of margins

! Different aspects of dependence between multivariate data are visually highlighted by taking
different marginal distributions.

! Bivariate normal data on (clockwise from top left) Gaussian, uniform, Fréchet and Laplace scales,
with density contours (grey).
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5.2 Copulas slide 166

Standardizing margins

! When studying dependence it helps to remove the effect of marginal transformations.

! Here we consider only continuous random variables, and apply the probability integral
transformation to obtain variables with uniform margins.

! Suppose that X ∼ F is continuous, and takes values everywhere in an interval of R, so the inverse

F−1(p) = inf{x : F (x) ≥ p}, 0 < p < 1,

satisfies F{F−1(p)} = p and F−1{F (x)} = x.

! Then
P{F (X) ≤ u} = P{X ≤ F−1(u)} = F{F−1(u)} = u, 0 < u < 1 :

i.e., F (X) ∼ U(0, 1).

! Equivalently, if U ∼ U(0, 1), then X = F−1(U) ∼ F .

! If X = (X1, . . . ,XD) ∼ F has strictly monotone increasing marginal distributions F1, . . . , FD, we
therefore have Ud = Fd(Xd) ∼ U(0, 1) for each d ∈ {1, . . . ,D}, corresponding to the top right
panel on slide 165.

http://stat.epfl.ch slide 167

Copulas

! If X ∼ F is continuous with margins Fd then Ud = Fd(Xd) ∼ U(0, 1) for every d ∈ {1, . . . ,D},
and there exists C : [0, 1]D → [0, 1] such that

P(U1 ≤ u1, . . . , UD ≤ uD) = F{F−1
1 (u1), . . . , F

−1
D (uD)} = C(u1, . . . , uD),

for 0 ≤ u1, . . . , uD ≤ 1, where

C(0, u2, . . . , uD) = 0, C(u, 1, . . . , 1) = u

for any permutation of the indices.

! Similarly
F (x) = C{F1(x1), . . . , FD(xD)}.

! The copula C

– determines the dependence structure of U = (U1, . . . , UD) = (F1(X1), . . . , Fd(Xd)),

– is a cumulative distribution function with uniform margins,

– is unique (Sklar’s theorem) if F is continuous (as we assume), and

– its must derivatives yield joint density functions and thus constrain C.
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Examples

Example 26 (Independence copula) If (U1, . . . , UD) are independent, then

C(u1, . . . , uD) =
D∏

d=1

ud, , 0 < u1, . . . , uD < 1.

Example 27 (Co-monotone copula) If (U1, . . . , UD) are totally dependent, then U1 = · · · = UD

with probability one, and

C(u1, . . . , uD) = min(u1, . . . , uD), , 0 < u1, . . . , uD < 1.

Example 28 (Gaussian copula) In terms of the D-dimensional Gaussian CDF ΦD and the univariate
Gaussian CDF Φ, the Gaussian copula is

CΩ(u1, . . . , uD) = ΦD
{
Φ−1(u1), . . . ,Φ

−1(uD);Ω
}
, 0 < u1, . . . , uD < 1,

which corresponds to the top-right panel on slide 165.
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Non-extremal dependence

! Measures such as the usual (Pearson) correlation coefficient depend on the margins, and we seek
to avoid this.

! Let (U1, U2) and (V1, V2) be independent pairs of variables with copula C.

! A standard measure of dependence is Kendall’s tau,

τ = corr{I(U1 > V1), I(U2 > V2)} = 4E{C(U1, U2)}− 1,

which measures the extent to which the event (U1 − V1)(U2 − V2) > 0 is more probable than the
event (U1 − V1)(U2 − V2) < 0.

! τ measures the dependence of the entire distribution, but we wish to focus on the tails.

Example 29 Compute Kendall’s tau for the bivariate independence and co-monotone copulas.
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Note to Example 29

! The bivariate independence copula is C(u1, u2) = u1u2, and

E{C(U1, U2)} = E(U1U2) =

∫ 1

0

∫ 1

0
u1u2 du1 du2 = (1/2)2 = 1/4,

so τ = 0.

! The bivariate co-monotone copula is C(u1, u2) = min(u1, u2) and under this model U1 = U2 with
probability one, so we integrate over just one of the variables:

E{C(U1, U2)} = E{min(U1, U2)} =

∫ 1

0
u1 du1 = 1/2,

so τ = 1.
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χ

! The probability that equally rare values of two variables occur simultaneously is a key extremal
property. When they have copula C we define the extremal correlation to be

χ = lim
u→1

P(U2 > u | U1 > u) = lim
u→1

1− 2u+ C(u, u)

1− u
, (13)

if it exists, or equivalently on general margins,

χ = lim
u→1

P
{
X2 > F−1

2 (u) | X1 > F−1
1 (u)

}
.

! X1 and X2 are asymptotically dependent (AD) if χ > 0 and asymptotically independent
(AI) if χ = 0.

! For statistical purposes, as u → 1 we replace 1− u and 1−C(u, u) in (13) by the approximations
− log u and − logC(u, u) and obtain

χ(u) = 2−
logC(u, u)

log u
, 0 < u < 1,

with the focus on χ(u) for u ≈ 1.

Example 30 (Logistic copula) Compute χ(u) for the logistic copula.
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Note to Example 30

! The bivariate logistic copula

C(u1, u2) = exp
[
−
{
(− log u1)

1/α + (− log u2)
1/α
}α]

, α ∈ (0, 1],

evaluated for u1 = u2 = u gives

C(u, u) = exp
[
−
{
2 (− log u)1/α

}α]
= exp {−2α (− log u)} = u2

α
,

which results in the extremal correlation

χ(u) = 2−
log(u2

α
)

log u = 2− 2α log u
logu = 2− 2α.

This is constant in u due to the max-stability of the logistic copula (more later).

! We have the following limiting cases:

lim
α→1

χ(u) = 2− 21 = 0,

that corresponds to independence and

lim
α→0

χ(u) = 2− 20 = 2− 1 = 1,

that corresponds to perfect dependence (the co-monotone copula).
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χ

! χ can distinguish the strength of dependence for AD distributions, but not the different rates at
which χ(u) → 0 for AI distributions as u → 1.

! We define

χ(u) = 2
log P(U1 > u)

log P(U2 > u,U1 > u)
− 1 = 2

log(1− u)

log {1− 2u+ C(u, u)}
− 1, 0 < u < 1, (14)

and use χ = limu→1 χ(u) to measure the degree of AI.

! The scaling is chosen so that if

– X and Y are independent, C(u, u) = P{FX(X) > u,FY (Y ) > u} = (1− u)2, and then
χ(u) ≡ 0;

– if X and Y are perfectly dependent, C(u, u) = 1− u, and then χ(u) ≡ 1;

– if X and Y are asymptotically dependent, χ(u) → 1 as u → 1;

– −1 < χ(u) ≤ 1, and χ(u) increases with increasing dependence.

Example 31 (Bivariate normal) χ = ρ for the bivariate normal distribution.
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Note to Example 31

! As both probabilities tend to zero as u → 1, we first use l’Hôpital’s rule to obtain

lim
u→1

P(U2 > u | U1 > u) = lim
u→1

P(U2 > u,U1 > u)

P(U1 > 0)

= lim
u→1

P(U2 > u,U1 = u) + P(U2 = u,U1 > u)

P(U1 = u)

= lim
u→1

2P(U2 > u | U1 = u)

if the distribution is symmetric (as here).

! Note that Mill’s ratio
P(X1 > x) = Φ(x) ∼ φ(x)/x, x → ∞,

implies that log P(X1 > x) ∼ −x2/2− log x as x → ∞.

! In

log P(U1 > u)

log P(U1 > u) + log P(U2 > u | U1 > u)
, (15)

U1 and U2 can be replaced by standard normal variables X1 and X2, and as the distribution is
symmetric, for large x we have

P(X2 > x | X1 > x) ∼ 2P(X2 > x | X1 = x) = 2Φ

{
x(1− ρ)

(1− ρ2)1/2

}

∼ φ

{
x(1− ρ)

(1− ρ2)1/2

}
÷

x(1− ρ)

(1− ρ2)1/2

Hence
log P(X1 > x)

log P(X1 > x) + log P(X2 > x | X1 > x)
∼

−x2/2− log x

−x2/2− log x− x2(1−ρ)2

2(1−ρ2) − log
{

x(1−ρ)
(1−ρ2)1/2

}

→
1

1 + (1− ρ)/(1 + ρ)
, x → ∞,

= (1 + ρ)/2.

Hence χ = ρ, thus stressing the interpretation of positive, negative and zero values of χ.
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Comments

! Copulas allow the dependence between several variables to be studied without reference to their
marginal distributions. They are very widely used in finance, insurance and other areas.

! A key distinction for rare events is between asymptotic dependence (AD) and asymptotic
independence (AI), which correspond to χ > 0 and χ = 0 for

χ = lim
u→1

χ(u) = lim
u→1

P{F2(X2) > u | F1(X1) > u}, 0 < u < 1,

in practice replaced by the asymptotically (as u → 1) equivalent

χ(u) = 2−
logC(u, u)

log u
, 0 < u < 1,

where C is the copula for (X1,X2).

! A similar quantity χ(u) is used to distinguish different strengths of AI.

! Plots of χ(u) and χ(u) are essential graphical tools for looking at joint extremes, and are
produced by the R command evd::chiplot.
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5.3 Multivariate Models for Extremes slide 174

Extremes for D = 2

! Given variables (X,Y ) with the same marginal distributions, and a high threshold u, we might
consider any of the following scenarios:

– at least one of X and Y exceeds u, i.e., max(X,Y ) > u;

– both X and Y exceed u, i.e., min(X,Y ) > u;

– a function s(X,Y ) exceeds u, e.g., X + Y > u, though s(·) could also measure distance from
some multivariate centre for the data; or

– given that X > u, we consider the distribution of Y , where Y is called a concomitant of X;
the extremal set is X > u.

! There are other possibilities, but these already make life complicated enough.

! The grey regions on the next slide are considered to be extreme under these four scenarios.
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Extremes for D = 2
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Componentwise maxima

! If (X1, Y1), (X2, Y2), . . .
iid
∼ F (x, y), define the componentwise maxima,

MX,n = max
j=1,...,n

{Xj}, MY,n = max
j=1,...,n

{Yj};

note that Mn = (MX,n,MY,n) may not correspond to an actual observation (e.g., NO2, PM10 in
pollution example).

! Limiting distributions must exist for maxima of X and Y individually, because otherwise any
limiting joint distribution will be degenerate, so we ask

If non-degenerate limiting distributions exist for maxima of rescaled pairs
(X1, Y1), . . . , (Xn, Yn) as n → ∞, what forms can they have?

! Considered separately, {Xj} and {Yj} are sequences of independent, univariate random variables,
to which our previous theory applies: if a limiting distribution exists for each margin, then we can
consider the sequence of point patterns

Pn = {((Xj − bX,n)/aX,n, (Yj − bY,n)/aY,n) : j = 1, . . . , n} , n = 1, 2, . . . .

! As n → ∞ we will have convergence to a Poisson process, Pn
D
−→ P, with state space E = R2

and measure µ, say, which we can use for inference on extreme values.
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Point patterns for D = 2
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Rescaled bivariate exponential datasets of sizes n = 100 (left) and n = 104 (right).
In this case Λ(x) = e−x on each margin, so the transformation 1/Λ(x) to unit Fréchet margins for
maxima would exponentiate both axes and give many observations close to the origin.
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Marginal transformation

! On the X margin as n → ∞ we can choose the sequences {bn} and {an} so that

max{(X1 − bn)/an, . . . , (Xn − bn)/an}
D
−→ S ∼ exp{−ΛX(s)},

where ΛX(s) = (1 + ξXs)−1/ξX
+ is monotone decreasing, so Z = 1/ΛX (S) has the unit Fréchet

distribution

P(Z ≤ z) = P{1/ΛX (S) ≤ z}

= P{ΛX(S) ≥ 1/z}

= P{S ≤ Λ−1
X (1/z)}

= exp[−ΛX{Λ−1
X (1/z)}]

= exp(−1/z), z > 0.

! The same argument applies on the Y margin, so we can apply the transformation

g(x, y) = (1/ΛX (x), 1/ΛY (y)), (x, y) ∈ E = R
2

to Pn, giving sequences of point patterns

P∗
n = g(Pn) ⊂ E∗ ⊂ R

2
+, n = 1, . . . ,

such that the limiting maxima on each margin have unit Fréchet distributions.
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Limiting Poisson process

! The function g is invertible, so Poisson convergence for Pn and for P∗
n = g(Pn) is equivalent.

! As n → ∞, the point pattern P∗
n converges to a Poisson process P∗ on E∗ whose mean measure

µ∗ has margins
µ∗{R+ × (z,∞)} = µ∗{(z,∞) × R+} = 1/z, z > 0,

so we cannot compute the measure of any set containing the origin. To avoid this we define P∗

on the ‘punctured set’ E∗ = [0,∞)2 − {(0, 0)}.

! For any z ≡ (z1, z2) ∈ E∗ it is convenient to define

A∗
z = {(x, y) ∈ E∗ : x > z1 or y > z2},

so that the joint maxima satisfy

G∗(z) = P(Z1 ≤ z1, Z2 ≤ z2) = P{N∗(A∗
z) = 0} = exp{−µ∗(A∗

z)},

where N∗(A∗) is the number of points of P∗ in A∗ ⊂ E∗.

! In terms of the original process P and A∗ = g(A) we have

µ(A) = µ∗(A∗) = µ∗{g(A)},

which will be useful later.
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Exponent function

! For ease of notation define the exponent function

V (z) = V (z1, z2) = µ∗(A∗
z), z ∈ E∗.

! In the scalar case we saw that the GEV is max-stable, i.e., for any t > 0 there exist at > 0 and bt
such that

Gt(bt + atx) = G(x), x ∈ R,

and when G is unit Fréchet we have bt = 0 and at = t.

! In the multivariate case the same argument applies, giving

{G∗(tz)}t = G∗(z) =⇒ tV (tz) = V (z), z ∈ E∗, t > 0,

i.e., the function V is homogeneous of order −1.

! The marginal unit Fréchet distributions yield

V (z′,∞) = V (∞, z′) = 1/z′, z′ > 0.

! The homogeneity of V suggests a change of variables to angular coordinates

R = Z1 + Z2, W = (Z1, Z2)/R ⇐⇒ Z = (Z1, Z2) = RW,

which allow us to state the joint distribution of the maxima.
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Limit distribution of componentwise maxima

Theorem 32 If X1,X2, . . . , are independent copies of a D-dimensional random variable whose
componentwise maxima can be linearly renormalised to converge as n → ∞ to a random variable
Z = (Z1, . . . , ZD) that has a non-degenerate distribution with unit Fréchet margins, then

P(Z1 ≤ z1, . . . , ZD ≤ zD) = exp

[
−DE

{
D

max
d=1

(Wd/zd)

}]
, z1, . . . , zD > 0, (16)

where the angular variable W = (W1, . . . ,WD) lies in the (D − 1)-dimensional simplex, i.e.,

W ∈ SD−1 =

{

(w1, . . . , wD) : wd ≥ 0,
D∑

d=1

wd = 1

}

and satisfies the marginal mean constraints

E(Wd) = 1/D, d = 1, . . . ,D.

The angular probability distribution ν of W is otherwise arbitrary — it may or may not have an
angular density function ν̇.
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Note: Proof of Theorem 32

! The proof is not more complicated in D dimensions.

! The preceding argument implies that after the marginal transformations the D-dimensional point
processes P∗

n = g(Pn) converge to a Poisson process on E∗ = [0,∞)D − {(0, . . . , 0)} with
measure µ∗ which is homogeneous of order −1, so we just have to establish the form of the
distribution for maxima.

! Let (q1, . . . , qD) be a point in E∗. To see the effect of the change of variables, consider the
transformation T : E∗ → (0,∞) × SD−1 to angular variables defined by

T (q1, . . . , qD) = (r, w), r = q1 + · · ·+ qD, wd = qd/r, d = 1, . . . ,D,

and with inverse T−1(r, w) = rw. As T is invertible, T (P∗) is also a Poisson process.

! To compute the measure µ∗ ◦ T−1 that T induces for the angular variables (R,W ), note that as
rw ∈ A∗

z if and only if at least one of the rwd exceeds zd, or equivalently maxd rwd/zd > 1,

T (A∗
z) = {(r, w) : max(rw1/z1, . . . , rwD/zD) > 1}

= {(r, w) : raz(w) > 1}, (17)

where az(w) = max(w/z1, . . . , wD/zD). Moreover,

µ∗(A∗
z) = V (z) = V (rw) =

D

r
×D−1V (w) =

D

r
× ν(w), r > 0, w ∈ SD−1,

say, implying that

µ∗ ◦ T−1{(dr,dw)} =
D

r2
dr × ν(dw). (18)

! The appearance of D in (??) ensures that ν has unit measure, as we shall see below.

! Expression (??) is a product, so R and W are independent, and (??) yields

V (z) = µ∗(A∗
z) = µ∗ ◦ T−1 ◦ T (A∗

z) = µ∗ ◦ T−1 [{(r, w) : r > 1/az(w)}]

= D

∫∫

{(r,w):r>1/az(w)}
r−2dr ν(dw)

= D

∫ [
− r−1

]∞
1/az(w)

ν(dw)

= D

∫

SD−1

max
d

(
wd

zd

)
ν(dw)

= DE

{
max
d

(Wd/zd)

}
.

! As the margins of G∗ are unit Fréchet, when all but one of the zd are set to infinity we have

DE

{
max
d

(Wd/zd)

}
= DE(Wd)/zd = 1/zd, d = 1, . . . ,D.

Hence E(Wd) = 1/D, concluding the proof.

! To check that ν is a probability measure, note that

∫

SD−1

ν(dw) =

∫

SD−1

(w1 + · · ·+ wD) ν(dw) =
D∑

d=1

E(Wd) = D × 1/D = 1.
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Bivariate maxima

! If D = 2, then W1 = 1−W2 = W , say,

V (z1, z2) = 2E

{
max

(
W

z1
,
1−W

z2

)}
= 2

∫ 1

0
max

(
w

z1
,
1− w

z2

)
ν(dw),

and W ∼ ν, an angular (or spectral) distribution function on [0, 1], such that

E(W ) =

∫ 1

0
w ν(dw) = 1/2.

! If ν has an angular density function ν̇, then

V (z1, z2) = 2

∫ 1

0
max

(
w

z1
,
1− w

z2

)
ν̇(w) dw.

Example 33 Find the limiting distributions for maxima when (a) W ∈ {0, 1} with equal
probabilities, (b) W = 1/2 with probability one, (c) W ∼ U(0, 1).

These cases are not useful statistically, but they illustrate why a general treatment must allow ν to
have a mixture of point masses and density.
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Note to Example 33

! Let D = 2 and let P(W = 0) = P(W = 1) = 1/2. Then

V (z1, z2) = 2E [max{W/z1, (1 −W )/z2}] = 1/z1 + 1/z2,

yielding G∗(z1, z2) = exp(−1/z1) exp(−1/z2), corresponding to independence of Z1 and Z2. In
this case (Z1, Z2) have a joint density function.
In the corresponding D-dimensional case, W falls at the D corners of SD−1 with equal
probabilities 1/D.

! Let D = 2 and suppose that P(W = 1/2) = 1. Then

V (z1, z2) = 2E [max{W/z1, (1−W )/z2}] = max(1/z1, 1/z2),

and hence G∗(z1, z2) = exp{−1/min(z1, z2)}, corresponding to total dependence of Z1 and Z2.
Here Z1 = Z2 with probability one, so they have no joint density function; all the mass of their
joint distribution lies on the line z1 = z2.
In the corresponding D-dimensional case, W equals the barycentre D−11D of SD−1 with
probability one.

! Let D = 2 and let W have the uniform distribution on [0, 1]. Then w/z1 ≥ (1− w)/z2 when
w ≥ z1/(z1 + z2), and it is easy to check that

V (z1, z2) = 2E [max{W/z1, (1−W )/z2}] = 1/z1 + 1/z2 − 1/(z1 + z2).

In this case both W and (Z1, Z2) have density functions, with no atoms.
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Comments

! The strategy above was:

– use g to transform the original data to standard (unit Fréchet) margins;

– show that on these standard margins the limiting distribution for the transformed data has a
specific nonparametric form, subject only to restrictions on the marginal means.

! We saw that µ(A) (for the original data) equals µ∗{g(A)} (for the transformed data), so

– since g is monotone on each axis, A∗
z = g(Az) has the same shape as Az, and

– if we set z = (z1, z2) = ((x− bX,n)/aX,n, (y − bY,n)/aY,n), then

P(MX,n ≤ x,MY,n ≤ y) = P{(MX,n − bX,n)/aX,n ≤ z1, (MY,n − bY,n)/aY,n ≤ z2}

≈ exp{−µ(Az)}

= exp[−µ∗{g(Az)}]

= exp[−V {g(Az)}],

gives an approximate distribution function for (MX,n,MY,n), which we can use to find their
joint density.

! For statistical purposes we need models for V , or equivalently ν or ν̇, . . .
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Introduction

! The previous section gave a general framework for multivariate extremes, in which a general
nonparametric model appears.

! Two approaches to modelling are:

– estimating the full nonparametric model — difficult because of limited data;

– fitting a parametric sub-family of models — may be restrictive, but often is good enough.

! To do this we need

– some (reasonably flexible) parametric families of models,

– methods to fit them (likelihood),

– methods to assess their fit and to compare them.
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Parametric models

It is tricky to formulate parametric models that satisfy the mean constraints in D ≥ 3, but numerous
models exist for D = 2.

Example 34 The logistic model for general D has

V (z1, . . . , zD) =

(
D∑

d=1

z−1/α
d

)α

, z1, . . . , zD > 0, 0 < α ≤ 1,

and for D = 2,

ν̇(w) = 1
2(α

−1 − 1){w(1 − w)}−1−1/α{w−1/α + (1− w)−1/α}α−2, 0 < w < 1.

Independence and perfect dependence arise as limits as α ↑ 1 and α ↓ 0 respectively.
This model is limited by having only one parameter, which makes it symmetric and too inflexible for
most purposes. The same applies to the bivariate negative logistic model, which has

V (z1, z2) = 1/z1 + 1/z2 − (zα1 + zα2 )
−1/α, α > 0,

for which independence and perfect dependence arise when α → 0 and α → ∞.
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Logistic and Dirichlet densities

Left: logistic densities ν̇ with α = 0.1 (black), 0.3 (red), 0.5 (blue), 0.9 (green).
Right: Dirichlet densities ν̇ with parameters (α,β) = (0.5, 0.5) (black), (0.5, 1) (red), (0.5, 2) (blue)
and (2,3) (green).
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Hüsler–Reiss distribution

Example 35 (Hüsler–Reiss distribution) This is a natural analogue of the normal distribution in
extremal contexts. The bivariate version has a scalar parameter λ > 0 and exponent function

V (z1, z2) =
1

z1
Φ

{
λ

2
+

1

λ
log

(
z2
z1

)}
+

1

z2
Φ

{
λ

2
+

1

λ
log

(
z1
z2

)}
, z1, z2 > 0, (19)

where Φ denotes the standard normal cumulative distribution function.
For this model the angular variable W has density

ν̇(w) =
e−λ2/8

2λ{w(1 − w)}3/2
φ

{
1

λ
log

(
w

1− w

)}
, 0 < w < 1. (20)

! Recall the angular coordinates r = z1 + · · ·+ zD and w = (w1, . . . , wD) = z/r ∈ SD−1 defined in
terms of z = (z1, . . . , zD) ∈ E∗.

! If it exists, we obtain the angular density ν̇ from V using the formula

ν̇(w) = −
rD+1

D

∂DV (z1, . . . , zD)

∂z1 · · · ∂zD

∣∣∣∣
z1=rw1,...,zD=rwD

, w ∈ SD−1, r > 0.
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Asymmetric models

Asymmetric models include:

! the bilogistic model

ν̇(w) = 1
2(1− α)(1 − w)−1w−2(1− u)u1−α{α(1 − u) + βu}−1, 0 < w < 1,

where 0 < α,β < 1, and u = u(w,α,β) satisfies

(1− α)(1 − w)(1− u)β − (1− β)wuα = 0;

! and the Dirichlet model

ν̇(w) =
αβΓ(α + β + 1)(αw)α−1{β(1 − w)}β−1

2Γ(α)Γ(β){αw + β(1 − w)}α+β+1
, 0 < w < 1,

for parameters α,β > 0.

! The R function evd::fbvevd (see also evd::dbvevd) fits several bivariate models, including all
those above.
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Pickands’ dependence function

! Pickands’ dependence function A, determined by

V (z1, z2) =

(
1

z1
+

1

z2

)
A

(
z1

z1 + z2

)
,

gives a useful summary of dependence in bivariate problems. We have

(a) max(t, 1 − t) ≤ A(t) ≤ 1 for t ∈ [0, 1];

(b) A(t) = 1 for independent data, and A(t) = max(t, 1 − t) for perfectly dependent data;

(c) A(t) is convex in t; and

(d) we can write

A(t) = 1− t+ 2

∫ t

0
ν([0, w]) dw, 0 ≤ t ≤ 1.

! This last formula enables the computation of ν from A, since

ν([0, w]) =

{
{1 +A′(w)}/2, 0 ≤ w < 1,

1, w = 1,

where A′ is the right-hand derivative of A. Further differentiation gives ν̇, if it exists.
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Note: Pickands’ dependence function

(a) First, note that with t = z1/(z1 + z2), we have

A(t) = z1z2V (z1, z2)/(z1 + z2) = V {(z1 + z2)/z2, (z1 + z2)/z1} = V {1/(1 − t), 1/t}, 0 ≤ t ≤ 1.

Now since V > 0, comparison of the sets A(z1,z2), A(z1,∞) and A(∞,z2) shows that

V (z1, z2) ≤ V (z1,∞) + V (∞, z2) = 1/z1 + 1/z2,

and hence A(t) ≤ 1, and likewise

V (z1, z2) ≥ max{V (z1,∞), V (∞, z2)} = max(1/z1, 1/z2),

giving A(t) ≥ max(t, 1− t).

(b) To check the values of A for dependent and independent data, note that

A(t) = 2

∫ 1

0
max{w(1 − t), (1 − w)t} ν(dw),

and insert the appropriate ν. For example, if ν({0}) = ν({1}) = 1/2, then
A(t) = 2{t/2 + (1− t)/2} = 1, and if ν({1/2}) = 1, then
A(t) = 2max{(1− t)/2, t/2} = max(t, 1− t), corresponding to the independent and fully dependent
models respectively.

(c) For the convexity, note that the function max(ax, by) is convex for a, b ≥ 0 and x, y > 0, and
that linear combinations (with positive coefficients) of convex functions are convex. Thus the
(possibly infinite) linear combination of such functions, A(t), is convex in t.

(d) The final part is a bit more delicate. We can write

A(t) = 2

{

(1− t)

∫

(t,1]
w ν(dw) + t

∫

[0,t]
(1− w) ν(dw)

}

,

and the first integral may be expressed as∫

(t,1]
w ν(dw) =

∫

(t,1]
{1 + (w − 1)} ν(dw)

= 1− ν([0, t]) −

{
1
2 −

∫

[0,t]
(1−w) ν(dw)

}

= 1
2 − ν([0, t]) +

∫

[0,t]
(1− w) ν(dw).

We can write the remaining integral as
∫

[0,t]
(1− w) ν(dw) =

∫

[0,t]

∫ 1

w
du ν(dw) =

∫ 1

0

∫

[0,min(u,t)]
ν(dw)du

=

∫ t

0
ν([0, u]) du + (1− t)ν([0, t]).

Putting the bits together we get

A(t) = 1− t+ 2

∫ t

0
ν([0, u]) du, 0 ≤ t ≤ 1.
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Pickands’ dependence functions

Left: for logistic density with α = 0.1 (black), 0.3 (red), 0.5 (blue), 0.9 (green).
Right: for Dirichlet density with parameters (α,β) = (0.5, 0.5) (black), (0.5, 1) (red), (0.5, 2) (blue)
and (2,3) (green).
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Extremal coefficient

! A common scalar summary of dependence between (Z1, . . . , ZD) with CDF

P(Z1 ≤ z1, . . . , ZD ≤ zD) = exp {−V (z1, . . . , zD)} , z1, . . . , zD > 0,

is the so-called extremal coefficient θ = V (1, . . . , 1), which

– satisfies 1 ≤ θ ≤ D, and

– can be interpreted as the ‘number of independent maxima’ underlying Z1, . . . , ZD, because
the homogeneity of V gives

P{max(Z1, . . . , ZD) ≤ z} = P(Z ≤ z, . . . , ZD ≤ z)

= exp {−V (z, . . . , z)}

= exp {−V (1, . . . , 1)/z}

= (e−1/z)θ,

so smaller θ corresponds to stronger dependence.

! For asymptotically dependent models and D = 2,

χ = lim
z→∞

P(Z2 > z | Z1 > z) = 2− θ = 2{1−A(1/2)}.
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Marginal transformation

! The models for multivariate maxima have unit Fréchet margins, but data do not, so for each
margin we have

Zd =

(
1 + ξd

Yd − ηd
τd

)1/ξd

+

, d = 1, . . . ,D,

in terms of the original component-wise maxima Y = (Y1, . . . , YD)T, or in vector form,

ZD×1 =

(
1 + ξ

Y − η

τ

)1/ξ

+

,

where η, τ , ξ are vectors and addition, etc. are component-wise.

! The distribution of the maxima Y is therefore assumed to be

P(Y ≤ y) = G∗

{(
1 + ξ

y − η

τ

)1/ξ

+

}

, x ∈ R
D,

where G∗(z) = exp{−V (z)} is a simple extreme-value distribution.

! There are at least 3D + 1 parameters (3 for each margin, and at least 1 for V ).

http://stat.epfl.ch slide 194

Inference for multivariate maxima

! Inference involves:

– fitting of marginal GEV distributions and transformation to standard Fréchet;

– choice of dependence model V (or equivalently ν);

– estimation of ν (by maximum likelihood in parametric cases);

– model checking;

– computation of probabilities for events of interest.

! Ideally all the estimation is performed at once, by fitting marginal and dependence models
together (not always feasible in complex cases).

! In the bivariate case, the joint density for the maxima (Y1, Y2) can be written as

f(y1, y2) =
∂z1
∂y1

∂z2
∂y2

×

{
∂V (z1, z2)

∂z1

∂V (z1, z2)

∂z2
−

∂2V (z1, z2)

∂z1∂z2

}
× exp {−V (z1, z2)} ,

where the first two (Jacobian) terms depend on the marginal parameters and the remainder
depend both on those parameters and those of V (or equivalently ν).

! For larger D the number of terms with derivatives of V increases very rapidly, but the structure of
the density is the same.
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Example: Wind data
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Annual maximum wind speeds at Albany, New York and Hartford, Connecticut respectively, from
1944–1983.
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Example: Wind data

(fit1<-fbvevd(wind,model="log")) # Fit logistic dependence function

Call: fbvevd(x = wind, model = "log")

Deviance: 492.1304

AIC: 506.1304

Dependence: 0.3658468

Estimates

loc1 scale1 shape1 loc2 scale2 shape2 dep

49.96955 5.03097 0.01413 44.58484 4.33938 0.07879 0.70854

Standard Errors

loc1 scale1 shape1 loc2 scale2 shape2 dep

0.87434 0.63662 0.08826 0.76813 0.56747 0.11101 0.09742

plot(fit1,mar=1,which=c(3,4))

plot(fit1,mar=2,which=c(3,4))

plot(fit1,which=c(3:6))
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Example: Wind data

Diagnostic plots for the two marginal fits:
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Example: Wind data

Diagnostic plots for the fitted logistic model:

Density Plot
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What is wrong with (a) the empirical Pickands function? (b) the spectral density?

http://stat.epfl.ch slide 199

181



Example: Wind data

Residuals

ẑ1 =
{
1 + ξ̂1(y1 − η̂1)/τ̂1

}1/ξ̂1

+
, ẑ2 =

{
1 + ξ̂2(y2 − η̂2)/τ̂2

}1/ξ̂2

+

from the fitted model, on the unit Fréchet (left) and Gumbel (right) scales. Note the size of the event
in 1950.
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Example: Wind data

# fit without 1950

(fit2<-fbvevd(wind[-7,],model="log"))

Call: fbvevd(x = wind[-7, ], model = "log")

Deviance: 466.0202

AIC: 480.0202

Dependence: 0.2858570

Estimates

loc1 scale1 shape1 loc2 scale2 shape2 dep

50.45888 4.98736 -0.31263 44.41348 4.16650 0.08284 0.77749

Standard Errors

loc1 scale1 shape1 loc2 scale2 shape2 dep

0.9011 0.6727 0.1355 0.7471 0.5383 0.1072 0.1004

The dependence parameter has increased, but still is significantly less than α = 1. The shape
parameter estimate ξ̂1 is now significantly negative.
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Comments

We see that:

! the marginal fits appear to be adequate (density plots not very useful);

! the joint fit appears to be reasonable (though there is not much data);

! the empirical Pickands function is not convex (!), but matches the fitted one fairly well;

! the angular density suggests that the windspeeds are not very dependent (the fitted angular
density shows spikes at w = 0, 1), though the standard error of around 0.1 for α̂ = 0.71 shows
that the data are clearly not completely independent;

! the 1950 event is quite influential—is it special in any way?
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Example: Wind data

Comparison with other models: recall that the deviance equals −2ℓ̂ and that AIC = −2ℓ̂+ 2p, for a
fitted model with p parameters and maximised log likelihood value ℓ̂. Small AIC is better.

Dependence function Paras Deviance AIC 2{1−A(1/2)}
Logistic 7 492.13 506.13 0.37
Hüsler–Reiss 7 491.20 505.20 0.37
Negative logistic 7 491.57 505.57 0.36
Asymmetric negative logistic 9 491.75 509.75 0.38
Bilogistic 9 489.79 505.79 0.29
Coles–Tawn 8 489.97 505.97 0.38
Asymmetric logistic — — — —
Asymmetric mixed — — — —
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More comments

! The Hüsler–Reiss model seems to be best of those that could be fitted, but there is very little
difference among them.

! There is no evidence of a need for an asymmetric dependence function.

! The dependence is not very strong; this measure is 2− θ, so θ̂ ≈ 1.63, corresponding to

P(Z2 > z | Z1 > z) ≈ 2− θ ≈ 0.37;

this is appreciable but not strong dependence.

! There is probably a big loss of information due to using only the annual maxima, but at least
these can (probably) be treated as independent (need to check the dates to be sure).
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Poisson process approach

! If X1, . . . ,Xn
iid
∼ F lie in RD, then under the conditions for convergence of the maxima, we can

define component-wise transformations

g(X) = {1 + ξ(X − bn)/an}
1/ξ
+ , X, ξ, bn ∈ R

D, an ∈ R
D
+ ,

such that the sequence of point processes

P∗
n = {g(X1), . . . , g(Xn)}, n = 1, 2, . . . ,

converges to a Poisson process P∗ on E∗ = RD
+ − {0} with exponent function V and measure µ∗,

where V (z) = µ∗(A∗
z), and A∗

z = E∗ − [0, z1]× · · · × [0, zD]

! The corresponding density based on the points z1, . . . , znA∗ in an ‘extreme’ set A∗ ⊂ E∗ is

exp {−µ∗(A∗)}×
nA∗∏

j=1

µ∗(dzj),

with µ∗(dzj) replaced by µ̇∗(zj) when µ∗ has a density function.

! If the limit process is assumed to be exact for events in A∗ (see below), we can base inference for
µ∗ on this expression.
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Marginal transformation

! If we are interested in an extreme region B in E , we choose a region A∗ ⊂ E∗ in the transformed
data space such that g(B) ⊂ A∗ and use the Poisson process model.

! For the marginal transformation g, we take thresholds u1, . . . , uD, usually corresponding to the
same quantile (e.g., 0.95) of each margin; nud observations exceed these thresholds, and
p̂d = nud/n is the estimated exceedance probability for dimension d.

! We fit GPDs above these thresholds, giving fitted marginal distributions

F̂d(x) =

⎧
⎨

⎩

#{j : xj,d ≤ x}/n, x ≤ ud,

1− p̂d
{
1 + ξ̂d(x− ud)/σ̂d

}−1/ξ̂d

+
, x > ud,

d = 1, . . . ,D,

based on the D marginal GP parameter estimates (σ̂d, ξ̂d).

! We then apply this estimated probability integral transformation component-wise to
xj = (xj,1, . . . , xj,D) ∈ E to get

zj = −1/ log F̂ (xj), j = 1, . . . , n,

which lie in E∗ and have approximate unit Fréchet margins.

! There are corresponding angular variables

rj = ∥zj∥1 > 0, wj = zj/rj ∈ SD−1, j = 1, . . . , n.
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Extremal region A∗

! We have to choose an ‘extreme’ region A∗ on which to base the likelihood

exp {−µ∗(A∗)}×
nA∗∏

j=1

µ∗(dzj), A∗ ⊂ E∗.

! In most cases µ∗ has a tractable density µ̇∗, so the bottleneck is computation of µ∗(A∗).

! In terms of the angular coordinates, µ∗(dzj) = r−2
j dr ×D ν(dwj) ∝ ν̇∗θ (wj), if there is a

parametric angular density.

! If A∗ = {(x, y) : x+ y > r0} for some large r0, then

µ∗(A∗) = 2

∫

A∗

dr

r2
ν(dw) = 2

∫ ∞

r=r0

dr

r2

∫ 1

w=0
ν(dw) = 2/r0,

does not depend on parameters of ν∗. In this case the likelihood is

L(θ) = exp{−µ∗(A∗)}
nA∗∏

j=1

µ̇∗(zj) ∝
nA∗∏

j=1

ν̇∗θ (wj),

since none of the other terms depend on ν̇∗θ (or θ).

! This likelihood is simple but not much used, because non-extreme data can corrupt the fit.
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Censored likelihood

! For simplicity suppose D = 2 and z = (z1, z2) ∈ E∗.

! Even if r0 is large, sets such as

A∗ = {(z1, z2) : z1 + z2 > r0 > 0}

contain values for which one of z1 and z2 is small, so asymptotic models may not apply.

! To fix this we split E∗ into subsets

E∗
00 = {(z1, z2) : z1 ≤ u1, z2 ≤ u2}, E∗

10 = {(z1, z2) : z1 > u1, z2 ≤ u2},

E∗
01 = {(z1, z2) : z1 ≤ u1, z2 > u2}, E∗

11 = {(z1, z2) : z1 > u1, z2 > u2},

with respective likelihood contributions based on

P(Z1 ≤ u1, Z2 ≤ u2),
∂P(Z1 ≤ z1, Z2 ≤ u2)

∂z1
,

∂P(Z1 ≤ u1, Z2 ≤ z2)

∂z2
,

∂2P(Z1 ≤ z1, Z2 ≤ z2)

∂z1∂z2
.

This uses the full information about the values of (z1, z2) only in E∗
11, and otherwise just uses the

information that z1,j or z2,j falls below the appropriate threshold.

! This censored likelihood is the default for fitting Poisson process models to multivariate data.
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Example: Oceanographic data
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Simultaneous values of wave and surge height.
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Example: Oceanographic data
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Estimates of χ(u) and χ(u). The wide confidence intervals as u → 1 are typical (and indeed
inevitable) and complicate the interpretation of such plots.
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Example: Oceanographic data
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Simultaneous values of wave and surge height, transformed to unit Fréchet scale, with regions
E∗
00, . . . , E

∗
11 determined by the grey lines marking the marginal 0.95 quantiles.
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Example: Oceanographic data

> (fit <- fbvpot(wavesurge,apply(wavesurge,2,quantile,0.95),model="log"))

Call: fbvpot(x = wavesurge, threshold = apply(wavesurge, 2, quantile,0.95), model = "log")

Deviance: 2036.076

AIC: 2046.076

Dependence: 0.3072850

Threshold: 6.08 0.322

Marginal Number Above: 144 144

Marginal Proportion Above: 0.0498 0.0498

Number Above: 49

Proportion Above: 0.0169

Estimates

scale1 shape1 scale2 shape2 dep

1.261341 -0.134651 0.091877 0.008904 0.759339

Standard Errors

scale1 shape1 scale2 shape2 dep

0.13162 0.06908 0.01067 0.08568 0.02945
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Example: Oceanographic data

Results for fits: recall that the deviance equals −2ℓ̂ and that AIC = −2ℓ̂+ 2p, for a fitted model with
p parameters and maximised log likelihood value ℓ̂. Small AIC is better.

Dependence function Paras Deviance AIC 2{1−A(1/2)}
Logistic 5 2036.08 2046.08 0.31
Hüsler–Reiss 5 2035.38 2045.38 0.30
Negative logistic 5 2034.91 2044.91 0.30
Bilogistic 6 2035.80 2047.80 0.31
Coles–Tawn 6 2035.35 2047.35 0.31
Negative bilogistic 6 2034.85 2046.85 0.31
Asymmetric mixed 6 2044.15 2056.15 0.33
Asymmetric logistic 7 2036.60 2050.60 0.31
Asymmetric negative logistic 7 2035.78 2049.78 0.31

The first three fits seem best, based on the AIC values, but the differences are not large overall; it
seems that the data are not complex enough to warrant a very complex (or asymmetric) model.
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Example: Oceanographic data

Model Deviance χ σ1 ξ1 σ2 ξ2 Dep
Logistic 2036.08 0.31 1.260.13 −0.130.07 0.090.01 0.010.09 0.760.03
Hüsler–Reiss 2035.38 0.30 1.250.13 −0.110.07 0.090.01 0.030.08 0.970.07
Negative logistic 2034.91 0.30 1.250.13 −0.120.07 0.090.01 0.010.08 0.580.06

! The fits are very similar, showing data whose extremes are clearly dependent, even if the
probability of high extremes on one variable given them on the other is not very high.

! The dependence parameters are not comparable (because the models are not the same), but they
all give similar values of χ.

! The same censored fitting approach can be used when D ≥ 3, but the coding becomes quite
complex, with 2D cases.
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Example: Oceanographic data
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Fitted Pickands functions for the logistic (solid), Hüsler–Reiss (dots) and negative logistic (dashed)
models. They are essentially identical.
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Diagnostic plots (from plot(fit)) for threshold fit to oceanographic data. (A bug prevents the
points on the left from being smaller.) According to the help, the quantiles are at 0.75, 0.8, . . . , 0.95
by default.
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